Search results for "p-Laplace operator"

showing 3 items of 3 documents

An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

2010

We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.

Convex hullConvex analysisp-Laplace operatorGeneral MathematicsMathematical analysisConvex setDirichlet eigenvalueSubderivativeMathematics::Spectral TheoryCombinatoricsupper boundsSettore MAT/05 - Analisi MatematicaConvex polytopeConvex combinationAbsolutely convex setIsoperimetric inequalityMathematics
researchProduct

Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

2013

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p > 1) in a Lipschitz bounded domain Ω in ℝn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne—Weinberger inequality.

Pure mathematicsp-Laplace operatorGeneral MathematicsMathematics::Spectral TheoryLipschitz continuityUpper and lower boundsDomain (mathematical analysis)ConvexityCombinatoricslower boundsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsNeumann eigenvalueIsoperimetric inequalityLaplace operatorEigenvalues and eigenvectorsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Non-homogeneous Dirichlet problems with concave-convex reaction

2022

The variational methods are adopted for establishing the existence of at least two nontrivial solutions for a Dirichlet problem driven by a non-homogeneous differential operator of p-Laplacian type. A large class of nonlinear terms is considered, covering the concave-convex case. In particular, two positive solutions to the problem are obtained under a (p -1)-superlinear growth at infinity, provided that a behaviour less than (p -1)-linear of the nonlinear term in a suitable set is requested.

nonlinear elliptic problemmultiple solutionsVariational methodsp-Laplace operatorSettore MAT/05 - Analisi MatematicaGeneral Mathematicscritical pointRendiconti Lincei - Matematica e Applicazioni
researchProduct